
Purpose
The purpose of this scenario is to show how to create controllable view

This scenario hopes to show:

Create a block subtype to be used as a viewpoint manager. ♦
♦
♦
♦
♦
♦
♦
♦

Create an object used as a fixed viewpoint.
Create an object used as a mouse viewpoint.
Expose objects using the MATLAB Plug-in.
Load our viewpoints in MATLAB.
Control our viewpoints in MATLAB with a simple function m-file.
Load our objects in Simulink.
Control our viewpoints in Simulink.
VRo Scenario Series

Viewpoint
points.

Load sample viewpoint world
In WorldUp, open the viewpoint.up file located in the VRo/scenarios/viewpoint folder.

Create object to be used as a viewpoint manager
1. Expand the Block node. You will see the BlueBlock object.

2. Press the Create Subtype toolbar button.
3. Rename SubBlock to ViewpointManager.
4. Right-click on ViewpointManager and select Add Property.
5. Enter ActiveViewpoint for Property Name.
6. Select Single for Property Type.
7. Enter 1 for Initial Value.
8. Press Done.
9. Drag and drop ViewpointManager subtype to the Scene Graph.
10. Rename to ViewpointManagerBlock.
11. Set Enabled to False.

Create object to be used as mouse viewpoint
1. Drag and drop the Block subtype to the Scene Graph.
2. Rename Block-1 to MouseViewpointBlock
3. Set the Stretch property to 20, 20, 20.
4. Set the Enabled property to False.

Create object to be used as fixed viewpoint
1. Drag and drop the Block subtype to the Scene Graph.
2. Rename Block-1 to FixedViewpointBlock.
3. Set the Enabled property to False.

Use MATLAB Plug-in to expose objects
1. Select the ViewpointManagerBlock in the Scene Graph.
2. Select File►Plug-in Tools►Expose to Matlab
3. Expose the ActiveViewpoint property.
4. Press OK.
5. Select the MouseViewpointBlock in the Scene Graph.
6. Select File►Plug-in Tools►Expose to Matlab
7. Expose the Translation property.
8. Press OK.
9. Select the FixedViewpointBlock in the Scene Graph.
10. Select File►Plug-in Tools►Expose to Matlab
11. Expose both Translation and Rotation properties.
12. Press OK.

Write task script to control viewpoints
Select File►New Script.

Enter the following:

sub task

dim w as window
dim View as viewpoint
dim ViewDirection as vect3d
dim ViewOrientation as orientation

dim ViewpointManagerBlock as viewpointmanager

set w = getfirstwindow()
set View = getviewpoint("Viewpoint-1")

set ViewpointManagerBlock = getviewpointmanager("ViewpointManagerBlock")

if ViewpointManagerBlock.ActiveViewpoint = 1 then
 dim MouseViewpointBlock as geometry
 set MouseViewpointBlock = getgeometry("MouseViewpointBlock")

 w.ZoomToNode MouseViewpointBlock
end if

if ViewpointManagerBlock.ActiveViewpoint = 2 then
 dim FixedViewpointBlock as geometry
 set FixedViewpointBlock = getgeometry("FixedViewpointBlock")

 FixedViewpointBlock.GetGlobalLocation ViewDirection, ViewOrientation
 View.SetPosition ViewDirection
 View.SetOrientation ViewOrientation
end if

end sub

Save the task script as scene.ebs.

Because this is a task, it needs to be attached to an item in our scene graph. Let�s attach it
to our Light-1 object.

1. Right-click on Light-1 and select Edit Tasks.
2. Select SceneScript and press Add.
3. Press Done.

Select Simulation►Run to test that our task works. You should be able to fly around
the three objects in a spherical fashion. Close the created window when finished.

Load into Matlab
At the MATLAB prompt, pass the path to your viewpoint.up file into vroload:

my_objects = vroload('c:\mfiles\vro\scenarios\viewpoint\viewoint.up');

Let�s see what objects we have by using the overloaded set command:

set(my_objects(1))

 Type: ViewpointManager
 Name: ViewpointManagerBlock
 Properties: ActiveViewpoint (Custom)

This tells us my_objects(1) is of type ViewpointManager named
ViewpointManagerBlock with ActiveViewpoint as the exposed property.

set(my_objects(2))

 Type: Block
 Name: MouseViewpointBlock
 Properties: Translation (Vect3D)

This tells us my_objects(2) is of type Block named MouseViewpointBlock with
Translation as the exposed property.

set(my_objects(3))

 Type: Block
 Name: FixedViewpointBlock
 Properties: Rotation (Yaw,Pitch,Roll,Order)
 Translation (Vect3D)

This tells us my_objects(3) is of type Block named FixedViewpointBlock with
Rotation and Translation as the exposed properties.

http://www.terasoft.com/vro/doc/ref/matlab/vroload.html
http://www.terasoft.com/vro/doc/ref/matlab/setget.html

Write m-file to control viewpoints
Here is a simple m-file that controls the various viewpoints in our world:

function viewpoint(my_objects)

% assign our objects
ViewpointManagerBlock = my_objects(1);
MouseViewpointBlock = my_objects(2);
FixedViewpointBlock = my_objects(3);

%%% fly around in a circle looking down at our three objects

% compute circular x and z values
TransImagData = 30*exp(i*[0:0.001:pi*2]);
TransXData = real(TransImagData);
TransZData = imag(TransImagData);
TransYData = -15*ones(size(TransImagData));
TransData = [TransXData', TransYData', TransZData'];

% compute rotation values to keep viewpoint looking
% at center. RADIANS!

% look down at 30 degrees
RotXData = -pi/6*ones(size(TransImagData));

% compute angle to view center of circle
RotYData = angle(TransImagData);

% offset for VR rotational alignments
RotYData = -pi/2 - RotYData;

% construct other vectors
RotZData = zeros(size(TransImagData));
RotOrder = zeros(size(TransImagData));
RotData = [RotXData', RotYData', RotZData', RotOrder'];

% make our fixed viewpoint active
set(ViewpointManagerBlock, 'ActiveViewpoint', 2);

% move our fixed viewpoint
for k = 1:size(TransData,1),
 set(FixedViewpointBlock, 'Translation', TransData(k, :), ...
 'Rotation', RotData(k, :));
end

% set our mouse viewpoint active above the center of our world
set(ViewpointManagerBlock, 'ActiveViewpoint', 1);
set(MouseViewpointBlock, 'Translation', [0, -15, 0]);

Load into Simulink
1. Open Simulink and create a new model window.
2. From the VRo Blockset, drag the WorldUp ActiveX Control into the new

model.
3. Double-click on the thin black border surrounding the control to open the mask.
4. In the World Up File edit field, enter the full path to the location of viewpoint.up.
5. Press OK.
6. Add some simple sources.

If you notice your simulation finishes too quickly, in Simulation►Parameters, set the
Solver Type to Fixed-Step and specify a Fixed Step size of 0.01.

http://www.terasoft.com/vro/doc/ref/simulink/wupactivexcontrol.html

Conclusion
From this scenario we were shown how to:

♦
♦
♦
♦
♦
♦
♦
♦

Create a block subtype to be used as a viewpoint manager.
Create an object used as a fixed viewpoint.
Create an object used as a mouse viewpoint.
Expose objects using the MATLAB Plug-in.
Load our viewpoints in MATLAB.
Control our viewpoints in MATLAB with a simple function m-file.
Load our objects in Simulink.
Control our viewpoints in Simulink.

If you have any further questions, do not hesitate to contact Terasoft Support.

mailto:support@terasoft.com

	Purpose
	Load sample viewpoint world
	Create object to be used as a viewpoint manager
	Create object to be used as mouse viewpoint
	Create object to be used as fixed viewpoint
	Use MATLAB Plug-in to expose objects
	Write task script to control viewpoints
	Load into Matlab
	Write m-file to control viewpoints
	Load into Simulink
	Conclusion

